

Health Technology Assessment for Vagal Nerve Stimulation intervention

August 2023

Submitted by Regional Resource Centre for HTAIn ICMR-National Institute for Research in Tuberculosis No. 1, Sathyamoorthy Road, Chetpet, Chennai

Health Technology Assessment for Vagal Nerve Stimulation intervention

Study Team

Principal Investigator:	Dr. M Muniyandi, Scientist-D, Dept. of Health Economics
Co-Investigator:	Dr. Karikalan, Scientist C, Dept. of Socio Behavioural Research
	Dr. Kavitha Rajsekar, Scientist-E, ICMR, Dept. of Health Research, Ministry of Health and Family Welfare, New Delhi
Consultant	Dr. Rajeswari Ramachandran, (Neurologist), Former Deputy Director Senior Grade, ICMR-National Institute for Research in Tuberculosis

Version number and date: 0.3 dated 22.08.2023

Contents

Content	Page No	
Summary	4	
Introduction	5	
Objective	6	
Methodology	7	
Study Phases	7	
Systematic review and meta-analysis to find the clinical efficacy of VNS	7	
Screening and study selection	7	
PICO	8	
Search strategy	8	
Eligibility Criteria	8	
Inclusion and Exclusion criteria		
Study selection	8	
Data collection	9	
Data analysis	9	
Cost-effectiveness analysis of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India	9	
Rapid review to understand the adaptation of VNS	9	
Results	10	
Systematic review and meta-analysis to find the clinical efficacy of VNS		
Cost-effectiveness analysis of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India		
Rapid review to understand the adaptation of VNS		
Reviews of Literature	32	
References	56	

SUMMARY

Epilepsy is one of the major neurological disorders and people with epilepsy are usually treated with Anti-Seizure Medication (ASM). ASMs are commonly used to prevent recurring epileptic seizures. However, ASM is ineffective for 30% of patients and they fail to achieve adequate response. They are known to have Drug Resistant Epilepsy (DRE). Vagal Nerve Stimulation (VNS) is one of the neuromodulations approaches recommended for people with DRE. A metaanalysis done by Englot et al, in 2011 reported that VNS is effective in reducing more than 50% of seizure frequencies. However, there is no consistent evidence of cost-effectiveness of VNS. There is a need to understand the cost effectiveness of implementing VNS for refractory Epilepsy in India. In this HTA study we are planning to study the (1) cost-effectiveness of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India. (2) Systematic review and meta-analysis to find the clinical efficacy of VNS; and (3) rapid review to understand the adaptation of VNS in India and other countries. For the first objective, the cost effectiveness of VNS as an adjunctive treatment to ASM for the treatment of refractory Epilepsy in India is studied. The costs of VNS treatment and ASM is taken from the published literature. In the base case, VNS+ASM had an estimated incremental cost effectiveness of ₹745798 compared to ASM alone. Sensitivity analysis was done to assess uncertainty in the model. The results of cost-effectiveness analysis has shown that VNS is a cost-effective treatment compared to ASMs alone. In line with the second objective, we have done a systematic review by systematically searching for clinical trials and observational studies that assessed the clinical efficacy of VNS in PubMed, Google scholar, Science direct, Cochrane library. We have selected the studies and collected the data following the Preferred Reporting Items of Systematic reviews and Meta-Analysis (PRISMA). The results of meta-analysis have shown that VNS is clinically effective with a pooled estimate of 48% of >50% seizure reduction collected from 23 studies. The rapid review was done for the third objective to understand the adaption of VNS in India. Though VNS yields high percentage of seizure reduction, it is not widely in use due to several factors including the cost and complexity of the treatment. These factors are briefly discussed in the rapid review. From the cost-effectiveness study, the systematic review and meta-analysis and rapid review conducted, it is evident that VNS is clinically effective and cost effective to treat drug resistant epileptic patients when compared to the treatment with ASMs alone.

1. INTRODUCTION

Globally, neurological disorders such as illnesses of the brain, spine, and nervous system, are the main cause of disability¹ and the second leading cause of death worldwide.² In the upcoming decades, the number of fatalities and disabilities brought on by neurological disorders will increase as this burden becomes more widely acknowledged as a global public health concern². Globally, in 2016 the leading cause of DALY was neurological disorders and also the second leading cause of death.³ Fifteen percent of the global burden of diseases is contributed by India and it was estimated that it will increase by 23% in 2025. In 2017, as per the Indian Council of Medical Research (ICMR), 18% of the total Years Lost to Disability (YLDs) are due to Mental and Neurological Disorders (MNDs).⁴ Epilepsy is also one of the neurological disorders which contributes to high morbidity. Globally, 50 million people affected by epilepsy⁵ in India, it was estimated that the overall prevalence of epilepsy is 5.59-10 per 1000 population.⁶ Epilepsy patients who have seizures and do not respond to antiepileptic drugs are considered to be drug-resistant epileptics (DRE). The condition has also been referred to as intractable, pharmaco resistant epilepsy. Anti-seizure medication (ASM) is the most common intervention for seizures in epilepsy. ASM usually starts as one drug and can progress to a combination of drugs.⁷ The treatment of DRE is challenging and can be invasive and non-invasive. A review identified biomarkers of Vagus Nerve Stimulation (VNS) responsiveness in patients with drug resistant epilepsy.⁸ Recent advances like a machine learning algorithm which is a predictive model to identify response to VNS was developed. The predictive model may enable better prediction of patients who are likely to benefit from VNS and assist with clinical decision-making.

About 50 million people worldwide are suffering from epilepsy. There about 10million persons with epilepsy (PWE) in India. Epilepsy is a condition that has been found to be associated with large treatment gap. Poverty and poor health infrastructure has been found to be contributory to this large treatment gap.⁹ People with epilepsy can suffer from frequent and recurring seizures, varying in nature and severity. There is a wide range of potential impacts both on the equality of life of patients and their caregivers as well as the amount of health care resources required to manage the condition in both epilepsy patients and health systems. The

goal of epilepsy management is to reduce the frequency of seizures, and anti-seizure medications (ASMs) are the most common therapeutic intervention ASM treatment usually starts as monotherapy and may progress to a combination of drugs if needed. Approximately a third of people with epilepsy fail to achieve an adequate response to treatment with ASMs and can be describes a having drug-resistant epilepsy (DRE). Prevalence of DRE varies according to region and the definition of drug-resistance.

Various invasive methods are suggested like hemispherectomy, temporal lobectomy, and corpus colostomy for epileptic patients. However, these methods are highly invasive and are associated with surgical complications and postoperative deficits.¹⁰ VNS is one of the neuromodulation treatments for DRE and International clinical bodies suggested VNS as effective for patients where surgeries and pharmacotherapy are not advisable. Neuromodulation includes deep brain stimulation, vagal nerve stimulation, intracranial cortical stimulation transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation.¹¹ Randomised controlled trials on VNS was first conducted on 1994 on 67 refractory partial seizure epileptic patients which showed an obvious reduction in the frequency of seizures. Later, in 1997, VNS was approved by the US Food and Drug administration (FDA) which implanted in the left cervical VNS device to treat refractory epilepsy. In 2010, non-invasive transauricular VNS (i.e nVNS) device was approved by Europe for the treatment of epilepsy, depression and pain in 2012.¹²

VNS is effective in reducing the frequency of seizures by $\geq 50\%$.¹³ The treatment of epilepsy is a challenging task while selecting an appropriate drug or a combination of drugs that controls seizures most effectively at an acceptable level of adverse effects. Treatment of seizure disorder is almost always multimodal which includes suppression of recurrent seizures by prophylactic therapy with antiepileptic medications. Once the treatment of epilepsy is initiated, antiepileptic drugs are typically continued for at least two years. Tapering and discontinuing of antiepileptic drugs should be considered, if the patient has been seizure free for at least two years. Complete control of seizures in nearly 50% of patients is seen with an adherence to single drug treatment. In India, the management of neurological disorders by VNS is not widespread. There is a need to study treatment gap, efficacy and cost-effectiveness.

Objectives

- To estimate the clinical efficacy of VNS as treatment to reduce the frequency of seizures in refractory epilepsy patients through systematic review and meta-analysis
- To study the cost-effectiveness of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India
- To understand the level of adaption of VNS as a treatment practice refractory epilepsy patients in India and other countries

2. METHODOLOGY

Study Phases

This study has three phases (1) systematic review and meta-analysis to find the clinical efficacy of VNS; (2) cost-effectiveness of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India; and (3) To understand the adaptation of VNS in different countries.

(1) Systematic review and meta-analysis to find the clinical efficacy of VNS

This systematic review was conducted in updating the systematic review done up to 2007 and published by Dario J Englot et al, 2011. In accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). In this study, we reviewed the clinical efficacy of VNS in terms of the reduction of seizure frequencies. This study is conducted based on the published literature from the previously conducted studies.

Screening and study selection

Clinical trials of VNS reporting the percentage of seizure reduction as the outcome were systematically searched in the databases like PubMed, Science direct, Google scholar, Cochrane library. The PIOS (P-Population, I-Intervention, O-Outcome, and S- Study design) approach was carried out to conduct the systematic review. The population considered were patients with drug resistant epilepsy who were implanted VNS, Intervention is VNS, and the outcome considered is Seizure reduction. The study design included was the clinical trials. The details of the search strategy are provided in the search strategy table. In compliant with the objective, the studies which measured the seizure frequency reduction through VNS in drug resistant epileptic patients were included. Studies that involved other VNS like transcutaneous

VNS are excluded. Also, Letter to editors, conference abstracts, reviews, pre-clinical studies were excluded from the study. After removal of the duplicate studies, the title and abstracts were screened and 23 articles are finally included for the final meta-analysis.

This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Zotero was used as a reference manager for this systematic review. The screening process was done using Rayyan software and analysed by R software.

PICO of the review

Population (P)	: Drug Resistant Epileptic Patients
Intervention (I)	: VNS+ASM
Comparator (C)	: ASM
Outcome (O)	: Seizure Frequency

Search strategy

We have used the following phrases as search terms, a detailed search strategy tabulated in Table-1. Vagal Nerve Stimulation, neurological disorder, neuromodulation, epilepsy, seizure, vagus nerve system, Vagus nerve stimulation, neurological disorder and clinical trial were the key terms used in the search.

Eligibility criteria

This review included the analytical studies that implanted VNS on clinical applications when used as an adjunctive treatment for patients with drug resistant epilepsy. Journal articles published in English between 1998 to 2022 period was included

Inclusion and Exclusion criteria

The studies which considered VNS as an adjunctive treatment for patients with drug resistant epilepsy among adults are included in this study. In this study, we have excluded the studies that considered children as the population and articles that are published in other language except English are excluded. Studies that involved other type of VNS like transcutaneous VNS are also excluded

Study selection

Abstract, title, and full-text reviews were performed by two independent reviewers. Disagreements were resolved by consensus or by a third reviewer. We screened the titles, abstracts, and full text of the studies to confirm inclusion or exclusion. Studies with insufficient information to determine the use of VNS were excluded. We then incorporated the process of including and excluding studies in the final systematic review. This process was summarized in a PRISMA flowchart.

Data collection

From the selected articles, the necessary details were collected in a data extraction form prepared in Microsoft excel. The data extraction form captured the study design, sample size, seizure type, the duration of follow-up in months, mean or median percentage of seizure reduction, percentage of patients who had >50% seizure reduction, country where the study is conducted and the year of publication.

Data analysis

Based on the information collected, we estimated the standard error to find the confidence interval in order to do the meta-analysis. The heterogeneity of the studies was assessed using the I^2 statistic and presented through a forest plot. Cochran's Q test was employed, which calculates the weighted sum of squared differences between individual study effects and the pooled effect across studies. Q follows a chi-square distribution with k-1 degrees of freedom, where k represents the number of studies. Heterogeneity is considered to be present when the p-value obtained from the Q test is less than 0.1.

(2) Cost-effectiveness analysis of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy in India

In this phase, we have estimated cost-effectiveness based on economic valuation of VNS as an adjunctive treatment to anti-seizure medications for the treatment of drug resistant epilepsy done for England. This analysis done using hybrid modeling which involves decision tree and Markov modelling from the health perspective. We focused on assessing the impact of treatment for drug resistant epileptic patients through VNS procedure in comparison to ASM in the public health facilities in India.

(3) Rapid review to understand the adaptation of VNS

This review were include the literature that implanted VNS among adults who are drug resistant epilepsy patients. Information on how common VNS in India, what is the cost of the equipment,

cost of implanting, various therapies for seizures (surgical, pharmacotherapy, exercise, yoga), alternative therapies, the adaptation of VNS in India was discussed with experts. Overall we described the overview of current evidence of VNS on clinical applications when used as an adjunctive treatment for patients with drug resistant epilepsy.

3. RESULTS

(1) Systematic review and meta-analysis to find the clinical efficacy of VNS

Search Results

The electronic search retrieved 1023 articles. After applying filters, the final number of articles that we have got is 549 in the systematic review. In google scholar the search terms used were VNS, neuromodulation, and neurological disorder. The number of articles that were taken from google scholar are 9170. In Cochrane library the search term used was epilepsy and we obtained 9186 articles. After deletion of duplicates and screening the title and abstract, the final number of articles taken into meta-analysis is 23.

Study selection

The PRISMA flowchart describes the study selection process (Figure-1). Overall, the electronic search from various data bases retrieved 1023 articles. After removing (62) duplicates, screening titles (298) and abstracts (568) articles were screened. Out of those 95 articles, due to unavailability of data, 74 articles were excluded. We have selected 23 through full text scrutiny for the final analysis.

Characteristics of the studies included. The general characteristics of the included studies are presented in Table-1. These articles were published between 1998 and 2022. It was observed that there is no clinical trial conduced for studying the efficacy of VNS in India for the adult population with drug resistant epilepsy. Majority of the studies were conducted in USA (11). Of the 23 studies, 8 are RCTs conducted in USA, Germany and Belgium.

Figure 1: PRISMA Flow chart

S. No	Study	Year	Design	Sample	Seizure Type	Follow- up months	Centre	Seizure reduction (%)	Seizure reduction (>50%)	Country
1	Handforth et al ¹⁴	1998	RCT	196	Partial	3	Multi	22	23	USA
2	Amar et al ¹⁵	1998	RCT	17	Partial	4	Single	39	57	USA
3	Schermann et al ¹⁶	2001	RCT	28	Mixed	NR	Single	30	45	Germany
4	DeGiorgio et al ¹⁷	2005	RCT	61	Partial	3	Multi	26	29	USA
5	Ben-Menachem et al ¹⁸	1999	Observational	64	Mixed	64	Single	NR	45	Sweden
6	Labar et al ¹⁹	1999	Observational	24	General	3	Single	46	46	USA
7	DeGiorgio et al ²⁰	2000	RCT	195	Mixed	12	Multi	45	35	USA
8	Chavel et al ²¹	2003	Observational	29	Partial	24	Single	53	54	USA
9	Vonck et al ²²	2004	RCT	118	Mixed	6	Multi	55	50	Belgium
10	Huf et al ²³	2005	Observational	40	NR	24	Single	26	28	USA
11	Ardesch et al ²⁴	2007	Observational	19	Partial	24	Single	25	33	Netherlands
12	Abubakr et al ²⁵	2008	Observational	31	Mixed	48	Single	52	20	USA
13	Boon et al ²⁶	1999	RCT	15	Partial	24	Single	11	54	Belgium
14	G L Morris ²⁷	2000	Observational	454	Mixed	36	Multi	43	37	USA
15	Elliott et al ²⁸	2009	Observational	19	mixed	115	Single	72	100	USA
16	Uthman et al ²⁹	2004	Observational	48	Partial	144	Single	52	60	USA
17	Santiago-Rodri'guez ³⁰	2006	Observational	20	mixed	23	Single	56	80	Mexico
18	Wang et al ³¹	2009	Observational	8	mixed	81	Multi	65	58	China
19	Muller et al ³²	2010	Observational	26	General	24	Single	NR	50	Hungary
20	Tzadok et al ³³	2019	Observational	51	General	13	Single	46	61	Israel
21	Herdt et al ³⁴	2007	Observational	138	General	12	Multi	51	59	Belgium
22	Ghaemi et al ³⁵	2010	Observational	144	General	28	Single	53	62	Germany
23	Hilderink et al ³⁶	2017	RCT	39	General	12	Single	NR	26	Netherlands

Table-1. Characteristics of the studies included in the review

The electronic search retrieved 1023 articles. After removing duplicate articles, the total number of articles that were eligible for screening is 961. After doing the title and abstract review 95 articles were finally considered relevant to the objective. Due to the non-availability of data, 76 articles were excluded and 23 articles were finally included in the study. All the articles collected were from the year ranging from 1998 to 2022 (Table-2 & Figure-2). Out of the total 23 articles, 8 are Randomized controlled trials and 15 are observational studies (Figure-3). Across the 23 studies, the sample size varied from 8 to 454 with the average sample size of 78. The efficacy of VNS implantation of the drug resistant epileptic patients was measured in the percentage of patients who had >50% reduction in seizure. In RCTs the average percentage of patients who had the desired outcome is 39% and in the observational studies the average percentage is 53% (Figure-4). The average seizure reduction across the 23 studies through VNS implantation is found to be 43%. The majority of the studies were conducted in USA (11) followed by Belgium (3) (Figure-5). The seizure type had three classifications namely partial, mixed and general. Seven studies have discussed about the partial seizures, 9 about mixed seizures and 6 about the general seizures. There were 7 multi centric studies and 16 single centre studies out of total 23 studies. The duration of follow up of the patients ranged from 3 to 144 months.

Figure 3. Number of VNS efficacy studies by design

Figure 4. VNS efficacy rate in different studies

Figure 5. Number of VNS efficacy studies included

Figure 6. Forest plot depicting effect size in each study

The forest plot depicts the effect size of the VNS in all the studies along with the overall effect size. The vertical line indicates the null effect point. Confidence intervals were calculated using the standard error estimated with the 95% confidence interval. We analysed the effect of VNS on seizure reduction in drug resistant epilepsy patients across 1784 patients in the 23 reports. The overall >50% reduction is found to be 0.48 with the standard error 0.0538 and confidence interval ranging from 0.38 to 0.59. The randomized controlled trials data are included from 669 patients and observational studies data from 1115 patients. Across these 1784 patients, seizures were reduced by 48% ranging from 38% to 59% with the follow up months ranging from 3 to 144 months. The heterogeneity of the study is assessed using I² statistic, Cochrane test and visual presentation of forest plot. The I² statistic is found to be 18.0665 with the degrees of freedom being n-1 where n is the number of studies. Here the degrees of freedom is 22. The p value is 0.7020 which states that there is no heterogeneity among the studies and the pooled estimate is reliable. Our results suggest that around 50% of the patients who were treated with VNS benefits more than 50% of the reduction in seizure frequency.

We have also analysed the observational studies and RCTs separately and found the clinical effectiveness separately. The effectiveness of VNS in observational studies are found to be 0.55 ranging from 0.41 to 0.68 and the RCTs are found to be 0.36 ranging from 0.19 to 0.52.

(2) Cost-effectiveness analysis of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy

In terms of the cost effectiveness of Vagus Nerve Stimulation, there are several studies that has already been conducted in different countries. Few such studies are (1) an economic evaluation of VNS as an adjunctive treatment to anti-seizure medications for the treatment of drug resistant epilepsy by Raspin et al in England, (2) Health Technology Assessment report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy by Marras et al in Italy, (3) Cost analysis of antiepileptic drugs available in India by Shukla et al, and (4) Direct medical costs of refractory epilepsy incurred by three different treatment modalities: A prospective treatment by Boon et al. We have summarized the findings of this study descriptively and given them from an Indian perspective as follows.

An economic evaluation has already been conducted in England for vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug-

resistant epilepsy in England. They have used a Cohort State Transition Model. That model simulates the costs and quality adjusted life years (QALYs) associated with two treatment strategies (1) VNS + ASMs and (2) ASMs alone. The model uses a 3-month cycle length and allows patients to transition between five health states based on their expected percentage reduction in seizure frequency. These percentage reductions are derived from data obtained from randomized controlled trials. This economic evaluation considers several cost components, including the costs of the VNS device, its installation, setup and removal, as well as costs associated with ASM therapy. Additionally, it accounts for costs related to adverse events associated with VNS (dyspnea, hoarseness and cough) and costs linked to epilepsyrelated healthcare utilization, such as hospitalizations, emergency department visits, neurologist visits, and primary care visits. The study conducts various sensitivity analyses, including probabilistic sensitivity analysis, to explore the impact of uncertainty in the model's parameters and structure.

The cost-effectiveness of the VNS + ASMs strategy is found to be mainly driven by the relative reductions in expected seizure frequency and the resulting differences in healthcare resource utilization. Based on the economic evaluation, the study concludes that VNS is expected to be a cost-effective intervention for treating drug-resistant epilepsy in the England from health system perspective. This study have also showed that VNS will reduce the amount of anti-seizure medications (ASMs) to the patients. Similarly another study by Tatum et al., on economic evaluation of VNS showed that the reduction in the amount of ASMs consumed by the patient increases the cost-effectiveness of the VNS. This study have explored the different scenarios where patients undergo VNS could potentially reduce their ASM use, the analysis encompassed a range of costs associated with different ASM tried by the patients with drug resistant epilepsy. Alongside these varying costs, hypothetical percentage reductions in ASM use were considered. The findings have revealed that the cost-effectiveness of VNS has improved in these scenarios. The input parameters used for the study is given in Table-2.

	Input Parameters	Base Case Values
Unit costs (£) for	GP visits	£39
health state care	A&E visits	£166
items	Non-elective inpatient admission: epilepsy	£1,340
	Elective inpatient admission: epilepsy	£3,777
	Day case for epilepsy	£587
	Elective inpatient admission for epilepsy,	£1,022
	incl. day cases	
	Neurologist appointment for adults	£186Adult
	Insertion of neurostimulator for treatment of	£6,986
	neurological conditions for adults	
Summary of	100% seizure reduction (seizure free)	
annual health care	Mean seizure frequency	0
resource	A & E visits	0
utilization	Inpatient visits	0
(Frequency)	Inpatient non-elective	0
	Inpatient elective	0
	Outpatient neurologist visits	1.50 (1.28-1.73)
	GP visits	0.15 (0.11-0.20)
	75-99% seizure reduction	
	Mean seizure frequency	243
	A & E visits	1.35 (1.15-1.56)
	Inpatient visits	1.25 (1.06-1.44)
	Inpatient non-elective	1.04 (0.88-1.19)
	Inpatient elective	0.22 (0.18-0.25)
	Outpatient neurologist visits	7.45 (6.34-8.57)
	GP visits	2.58 (2.54-2.63)
	50-74% seizure reduction	• • •
	Mean seizure frequency	287
	A & E visits	1.60 (1.36-1.84)
	Inpatient visits	1.48 (1.26-1.7)
	Inpatient non-elective	1.22 (1.04-1.41)
	Inpatient elective	0.26 (0.22-0.29)
	Outpatient neurologist visits	8.81 (7.49-10.13)
	GP VISIts	3.02 (2.98-3.07)
	<50% seizure reduction	506
	Mean seizure frequency	300
	A & E VISILS	4.89 (3.33-0.40)
		0.12(4.42-8.10) 5.06(2.66.6.70)
		3.00(3.00-0.70)
	Outpatient pourologist visite	1.00(0.70-1.40) 16.03(11.59.21.10)
		5.05(11.36-21.19)
Annual costs non	100% soizure reduction (soizure free)	5.21 (5.17-5.20)
health state (f)	$\Lambda \ \rho_{\rm e} \ \Sigma$	f0
nearm state (L)	ΑαΕ	2U

 Table 2. The input parameters used for cost-effectiveness analysis of VNS

Input Parameters		Base Case Values
	Inpatient	£0
	Outpatient	£279
	GP	£6
75-99% seizure reduction		
	A&E	£225
	Inpatient	£1,609
	Outpatient	£1,387
	GP	£101
50-74% seizure reduction		
	A & E	£266
	Inpatient	£1,902
	Outpatient	£1,639
	GP	£119
<50% seizure reduction		
	A & E	£811
	Inpatient	£7,866
	Outpatient	£2,981
	GP	£205

Source: Raspin C, Shankar R, Barion F, Pollit V, Murphy J, Sawyer L, Danielson V. An economic evaluation of vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug-resistant epilepsy in England. J Med Econ. 2021 Jan-Dec;24(1):1037-1051.

In this study, the health state costs were taken from publicly available sources, in line with NICE health technology assessment methodology. General practitioner costs, Secondary care costs for hospital admissions, neurologist visits and VNS procedures are also included in this study. Costs for people with DRE were not available, and the costs for hospital admissions were sourced for people with nerve disorders, epilepsy or head injury, with the derived unit cost weighted for the associated activity by comorbidity score. In the sensitivity analysis, the cost of inpatient care is varied in line with the level of expected comorbidity. Anti-seizure medication costs and VNS treatment costs has been taken from published literature. Adverse event costs were taken and the mean cost per cycle is estimated and applied proportionally to the percentage of the cohort experiencing the event in any given three month cycle.

The study has shown that in the base case analysis, the use of VNS + ASMs is associated with an estimated ICER of $\pounds 17,771$ per QALY gained compared to using ASMs alone. That is, we have to spend $\pounds 17,771$ for gaining a QALY in VNS when compared to using ASMs alone.

The ICER represents the additional cost needed to gain one QALY by adding VNS to the treatment regimen.

We tried to measure the cost-effectiveness analysis of VNS adjunctive treatment to ASM for the treatment of refractory Epilepsy for India. Due to the unavailability of data in the Indian context, we have calculated ICER using the method given in this paper changing the available costs that we have taken from the available sources.

Table 3. Cost for various procedure involved in VNS in India

VNS	Cost (₹)
VNS procedure cost (cost of placement)	1,50,000
VNS device cost – Demipulse	8,50,000
VNS device cost – Aspire SR	10,50, 000
VNS device cost – Sentiva (newest model)	14,50, 000

Source: Siddharth Kharkar. Epilepsy Surgery Cost in India 2023. Neuro+ Epilepsy and Parkinsons Clinic. <u>https://drkharkar.com/epilepsy-surgery-cost-in-india-best-epilepsy-treatment-in-india/</u>

A budget impact study has been conducted by Purser MF et al., for USA in 2018 for assessing the expected budget Impact and Health Outcomes of Expanded Use of VNS Therapy for Drug-Resistant Epilepsy. In this study they have developed an excel model to compare the costs of AED treatment with the costs of VNS plus AED treatment. Costs included VNS device, placement, programming, and battery changes; adverse events associated with VNS (cough, voice alteration, device removal resulting from surgical site infection); AEDs; and seizure-related costs affected by seizure frequency, which affects resource utilization (i.e., hospitalizations, emergency department visits, neurologist visits). To estimate the potential savings with VNS due to a reduction in seizure frequency. The relative difference is found to be the maximum in 3rd to 5th year. The average relative difference between cost without VNS and cost with VNS is found to be 21.5%. In conclusion, this study has found that VNS is a proven intervention that offers a long-term solution for patients with DRE by reducing seizure frequency, which leads to lower resource utilization and lower costs.

Table 4. Budget impact for USA

	1 st year	2 nd year	3 rd -5 th year	Total years
Cost without VNS	\$110,709,545	\$110,709,545	\$110,709,545	\$553,547,724
Cost with VNS	\$141,644,874	\$74,932,599	\$72,657,493	\$434,549,953
Budget impact	\$30,935,329	(\$35,776,946)	\$38,052,052	\$118,997,771
Relative difference	27.94%	32.32%	34.37%	21.5%

Health Technology Assessment Report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy review on International journal of Environmental Research and Public Health. This study assessed the clinical, organizational, financial, and economic impact of VNS therapy in drug-resistant epilepsies and established the congruity between costs incurred and health service reimbursement. VNS is a palliative treatment for reducing seizure frequency and intensity. Despite its economic cost, VNS should improve patients' quality of life and reduce family care needs. This HTA analysis focused mainly on the following issues: (a) social impact and costs of the disease; (b) clinical results after VNS therapy; (c) quality of life after VNS therapy; (d) economic impact and productivity regained after VNS; and (e) costs of VNS. A review with economic modelling has estimated the cost of epilepsy in 28 European countries. Despite a prevalence of 4.3 to 7.8 patients per 1000 persons, the total cost in Europe was estimated at EUR 15.5 billion, of which the indirect costs accounted for 55%, the direct costs of health (particularly outpatient care which entailed an expenditure of EUR 1.3 billion) accounted for 18%, and the non-medical cost for 27%; the cost per case treated/year ranged from EUR 2000 to 11,000. The economic burden of epilepsy is substantial, and it is inversely proportional to seizure control. Costs are higher in the first year after diagnosis than in the following years and varied according to the age of the patient. The major cost driver is hospitalization (63.7%), followed by drugs (10.5%), day-hospital visits (4.1%), outpatient visits (3.85%), other tests (3.1%), and electroencephalograms (2.3%). In particular, direct costs (outpatient and hospital) are based also on the age of onset of the disease, epilepsy features, frequency of seizures, and type of ASDs taken. In addition, indirect costs (for example: lost productivity) account for about half of the total costs. In addition to the economic cost the social burden, in terms of stigma and poor quality of life in patients of different ages, prognosis, comorbidity, and treatment response due to epilepsy is also considerable.

Table 5. Cost-effectiveness analysis for India

Cost	VNS + ASM (₹)	ASM alone (₹)	Increment
MRI	12,000	0	12,000
PET and MRI-PET	15,000	0	15,000
functional MRI (fMRI)	12,000	0	12,000
Video-EEG monitoring (2 days)	60,000	0	60,000
Psychiatry & Neuropsychological testing	6,000	0	6,000
VNS Implantation/ASM Medication	2,58,064	8064	2,50,000
Total costs	3,63,064	8,064	3,55,000
Health outcomes			
Life years	8.387	8.387	0
QALYs	6.118	5.642	0.476
Incremental outcomes			
ICER (cost per QALY)			745798.3

Figure 7. One Way Sensitivity Analysis

One Way Sensitivity analysis was done to assess the uncertainties around the model. The tornado diagram (Figure 7) depicts the parameters that highly influences the ICER value. The parameter cost of VNS implantation/ASM medication is found to be the parameter that is highly influencing the ICER value than the other parameters followed by Video-EEG monitoring for 2 days.

Figure 8. Cost effectiveness plane

The cost-effectiveness plane shows that the ICER value for gaining a QALY through VNS+ASM treatment for DRE patients is ₹745,798. This value falls in the first quadrant, indicating that it is in the "More cost, more effective" region of the plane. In summary, this means that while VNS is a successful treatment that can reduce seizures which is required for only the small proportion of DRE patients, it is also expensive and not easily affordable. Therefore, VNS cannot be considered as the most cost-effective option for a broader population.

(3) Understanding the adaptation of VNS in India

Prevalence of Epilepsy in India

According to the WHO, of the 50 million people with epilepsy worldwide, 80% reside in developing countries. It was estimated that Epilepsy was account for 0.5% of the global burden of disease. It is estimated that there are more than 10 million person with epilepsy in India. Its prevalence is about 1% in India and the prevalence is higher in rural (1.9%) as compared to urban population (0.9%). The age adjusted prevalence ratio of active epilepsy is 4.7 per 1,000 population. This may be underestimated due to methodological differences in prevalence estimation. With respect to incidence of epilepsy, there are very few incidence studies from India. The age standardised incidence rates reported was 27.3 per 100,000 population per year. The exact magnitude of medically intractable epilepsy in India is unknown.

Figure 9. Age specific prevalence of Epilepsy in India

Source: Santhosh NS, Sinha S, Satishchandra P. Epilepsy: Indian perspective. Ann Indian Acad Neurol. 2014 Mar;17(Suppl 1):S3-S11.

Figure 10. Year wise prevalence of Epilepsy in India

Source: Santhosh NS, Sinha S, Satishchandra P. Epilepsy: Indian perspective. Ann Indian Acad Neurol. 2014 Mar;17(Suppl 1):S3-S11.

Treatment Gap

In India, with less than 2,000 neurologists and estimated 5 to 6 million patients with active epilepsy. There is huge need to strengthen epilepsy services. In many developing countries, people with epilepsy do not receive appropriate treatment for their condition, India is not exceptional. There is a treatment gap in accessing health care facilities for diagnosis and treatment, and also not adhering to the prescribed antiepileptic drugs. The gap is reported to be influenced by various factors including lack of access to health facilities, lack of knowledge of antiepileptic drugs, poverty, cultural believes, stigma, poor health delivery infrastructure and shortage of trained professionals. The magnitude of epilepsy treatment gap in India ranges from 22% in urban to 90% in village.

Epilepsy Treatment

Human brain is the coordinating centre of body and it the hub for most of the important neurological activities. These activities are coordinated with the help of electrical signals which are produced and received by brain with the help of neurons. It is when this electrical activity becomes uncoordinated **the condition is called as Epilepsy**. Most people with epilepsy treated with medications called antiepileptic drugs. But these medications may not work in some people or unable to tolerate the side effects. This may happen when the seizers are being

produced throughout brain or the medications are unable to control them. It was suggested that one third of epilepsy patents, the seizers are very difficult to control medication alone. This condition called drug resistant epilepsy (DRE). Another option of treatment is surgical intervention to remove the part of the brain that causes seizers. However, not every one of this candidate for surgery. VNS is an adjuvant treatment that has been approved by FDA for those suffer from focal (partial epilepsy and that are not responding to antiepileptic medications. About 20-30% of persons developing epilepsy continue to exhibit chronic recurrent seizures despite optimal treatment with AEDs. Nearly one-third of the patients with newly diagnosed epilepsy on long-term follow-up will have their seizures unsatisfactory controlled by treatment with available AEDs. Intractable epilepsy is defined as occurrence of two or more seizures per month for a period of more than 2 years despite using two or more AEDs. These patients also suffer from hard-to-treat depression (treatment resistant depression). It can be life threatening disease.

Cost of VNS therapy in India

There is a wide range of variation in the prices of drugs marketed in India. There is a wide variation in the prices of different brands of same antiepileptic agent in Indian market. It was reported that wider variation of different brands of the same oral antiepileptic drugs in India market is very wide. Treatment of epilepsy has a long course with compliance being a key factor for successful treatment. It was recommended that improved adherence to treatment can be ensured by decreasing the cost of therapy by changing the government policies and regulations and creating awareness among treating physicians for switching to cost-effective therapy. High medical costs should be a cause of concern for policy makers and service providers. It was noted that clinicians usually do not appreciate the difference between inexpensive and expensive drugs. The average percentage price variation of different brands of the same oral antiepileptic drugs in India market is very wide. Treatment of epilepsy has a long course with compliance being a key facts for successful treatment. In India market, there are large numbers of branded drugs available, variable pricing between the different brands of the same formulation is widely prevalent in Indian drug market. In India majority of the health costs have met by the out of pocket expenses by the patients. High medical costs should be a cause of concern for policy makers and service providers.

The cost of VNS in India can vary significantly based on several factors, including the specific medical facility, the type of VNS device used, the surgeon's fees, and other associated

medical expenses. Generally, the total cost of VNS in India can range from ₹1,50,000 to 15, 00,000 or more. This cost covers the various components (Table-5).

Components	Description
VNS Device	The cost of the VNS device itself is a significant portion of
	the total expense. Advanced and newer models of VNS
	devices might be more expensive compared to older versions.
Surgical Procedure	The surgical implantation of the VNS device involves the
	expertise of a neurosurgeon and anesthesiologist. Their fees,
	along with the charges for the operation theater and other
	medical facilities, contribute to the overall cost.
Hospitalization and Follow-	The cost also includes expenses related to the patient's
up	hospital stay, post-operative care, and follow-up visits with
	the medical team.
Medication and Tests	Before and after the procedure, patients need certain tests and
	medications, which are additional costs to consider.
Insurance Coverage	Some health insurance plans in India provide coverage for
	VNS, partially or in full, depending on the policy terms and
	the condition being treated.
Geographic Location	The cost of medical procedures can also vary based on the
	region or city in India where the treatment is sought. Major
	metropolitan cities might have higher costs compared to
	smaller towns. It is essential for patients considering VNS as
	a treatment option to consult with a qualified neurologist or
	neurosurgeon to discuss the specifics of their case,
	understand the potential benefits and risks, and get a
	personalized estimate of the overall cost involved.

 Table 6. Different components of VNS cost

Table 7. Difference between	Vagus Nerve	Stimulation (VNS	S) and	Anti-seizure	Medications
(ASM)					

Components	VNS	ASM
Treatment Type	Surgical intervention involving device implantation	Medications taken orally or intravenously
Mechanism of Action	Electrical impulses stimulate the vagus nerve	Chemical substances act on the brain
Mode of Administration	Implanted device activated externally or programmed internally	Oral tablets, liquid, or injections
Treatment Application	Adjunctive therapy for drug- resistant epilepsy	Primary treatment for epilepsy
Treatment Response	Gradual and may take several months to show effects	Relatively fast; effects may be immediate or within days
Seizure Control Effectiveness	May reduce seizure frequency and severity	May provide significant seizure control
Side Effects	Mild to moderate; can include voice changes, throat discomfort, or cough	Can vary widely depending on the medication; may include dizziness, drowsiness, mood changes, etc.
Long-Term Use and Compliance	Implantation requires long-term commitment	Requires consistent adherence to medication schedule
Suitability for Patients	Typically considered for patients with drug-resistant epilepsy or limited medication effectiveness	Commonly prescribed for a wide range of epilepsy patients based on seizure type and other factors
Cost	Initial high cost for device implantation and follow-up	Generally more affordable in comparison to surgical intervention

Figure 11. VNS cost in India

Source: Siddharth Kharkar. Epilepsy Surgery Cost in India 2023. Neuro+ Epilepsy and Parkinsons Clinic. <u>https://drkharkar.com/epilepsy-surgery-cost-in-india-best-epilepsy-treatment-in-india/</u>

 Table 8. Cost for VNS pre-surgery investigations

Investigations	Indian Rupees (₹)
3 Tesla MRI	12,000
PET scan & PET-MRI fusion	15,000
Video-EEG monitoring (3 days)	30,000 x 3=90,0000
Functional MRI (fMRI)	12,000
Neuro-psychological & Psychiatry Assessment	6,000
Total cost	1,35,000

Source: Siddharth Kharkar. Epilepsy Surgery Cost in India 2023. Neuro+ Epilepsy and Parkinsons Clinic. <u>https://drkharkar.com/epilepsy-surgery-cost-in-india-best-epilepsy-treatment-in-india/</u>

Summary and Conclusion

- It is estimated that there are more than 10 million person with epilepsy in India. The prevalence of epilepsy is about 1% in India and the prevalence is higher in rural (1.9%) as compared to urban population (0.9%). The age adjusted prevalence ratio of active epilepsy is 4.7 per 1,000 population.
- With respect to incidence of epilepsy, there are very few incidence studies from India. The age standardised incidence rates reported was 27.3 per 100,000 population per year.
- There is a treatment gap in accessing health care facilities for diagnosis and treatment, and also not adhering to the prescribed antiepileptic drugs.
- The gap is reported to be influenced by various factors including lack of access to health facilities, lack of knowledge of antiepileptic drugs, poverty, cultural believes, stigma, poor health delivery infrastructure and shortage of trained professionals.
- In India, with less than 2,000 neurologists and estimated 5 to 6 million patients with active epilepsy. There is huge need to strengthen epilepsy services.
- The exact magnitude of medically intractable epilepsy in India is unknown. Intractable epilepsy is a seizure disorder in which a patient's seizures fail to come under control with treatment. These seizures are sometimes also called "uncontrolled" or "refractory." The intractable groups were epileptogenic structural abnormalities such as mesial temporal sclerosis (MTS), dysembryoplastic neuroepithelial tumor (DNET) and perinatal hypoxic ischemic brain injuries.
- The magnitude of epilepsy treatment gap in India ranges from 22% in urban to 90% in village.
- Most people (70% to 80%) with epilepsy treated with medications called antiepileptic drugs.
- About 20-30% of persons developing epilepsy continue to exhibit chronic recurrent seizures despite optimal treatment with AEDs. These patients need on long-term follow-up will have their seizures unsatisfactory controlled by treatment with available AEDs. These patients also suffer from hard-to-treat depression (treatment resistant depression). It can be life threatening disease.
- One third of epilepsy patents (20% to 30%), the seizers are very difficult to control medication alone. This condition called drug resistant epilepsy (DRE).

- Another option of treatment is surgical intervention to remove the part of the brain that causes seizers 50% of non-response DRE patients (10% to 15%). However, not every one of this candidate for surgery.
- There are different kinds of Epilepsy surgeries. But about 80-90% of patients eventually get either resective (removal) epilepsy surgery or Vagus Nerve Stimulator (VNS) epilepsy surgery.

Vagus Nerve Stimulator (VNS) epilepsy surgery.

- VNS is an adjuvant treatment that has been approved by FDA for those suffer from focal partial epilepsy and that are not responding to antiepileptic medications.
- The exact cost of Vagus Nerve Stimulation (VNS) epilepsy surgery in India depends on the type of device selected. There are many types of VNS devices. But only 3 VNS devices are currently (Dec 2022) being used in India: Demipulse, Aspire SR and Sentiva.
- Though VNS results in higher successful seizure reduction rates as an adjunctive therapy to Anti-seizure medications for treating seizures in drug resistant epileptic patients, there are certain inevitable reasons for why VNS is not widely used in India. The reasons are given as follows.
 - The significant reason is that VNS is highly expensive compared to other treatments for drug-resistant epilepsy.
 - VNS is not used to treat all the patients who have epilepsy. Despite, VNS is only for patients who have drug resistant epilepsy. This refers to a condition in which standard anti-seizure medications fail to adequately control seizures.
 - VNS can help reduce seizure frequency and severity in some individuals with some extend (depends on conditions).
 - Due to the availability of more ASMs drugs which result in advantageous results, patients who go for VNS treatment is considerably low.
 - Moreover, only one in thousand eligible patients in India under goes epilepsy surgery, due to lack of awareness and willingness.
 - Majority of the centres in India utilized simple non-invasive pre-surgical evaluation strategy is to select their candidates or epilepsy surgery, techniques SPECT, PET, fMRI, diffusion tensor imaging tractography and invasive EEG

were available in major centres and were utilized by centres that did not possess them.

- In addition to VNS, they have to put on AEDs, the number of drugs may be less and dosage may be come down.
- Total number of available drugs for epilepsy is increased in the last 20 years. At present, a newer ADE drugs are in broad spectrum, variety of generalized and focal seizures are controlled by these drugs.
- There are many adverse events that takes place followed by VNS. Some of them are, hoarseness or Voice Changes, coughing or throat irritation, paresthesia, headache, nausea, dyspnea, wound infections and allergic infections.
- VNS is typically considered when other treatment approaches have not provided adequate symptom control
- It is essential to note that the decision to use VNS is made on a case-by-case basis, and not all patients with drug-resistant epilepsy or treatment-resistant depression will be candidates for VNS.
- Medical professionals, including neurologists and psychiatrists, evaluate each patient's specific condition, medical history, and treatment response to determine whether VNS is a suitable option.
- Recent studies have shown that there is significant decrease in epilepsy related direct medical cost after implantation with VNS. This decrease is mainly due to an important decrease in number of hospital admission days after implantation. It is estimated that the cost of device can be paid back by savings in epilepsy related direct medical cost after 2.5 years.
- VNS is not an established treatment option for drug-resistant epilepsy. The wide use of VNS can vary depending on several factors, such as patient selection, adherence to treatment, and the underlying causes of epilepsy. Due to the cost effectiveness and increased treatment outcomes, VNS can be considered as the most suitable treatment for those who have drug resistant epilepsy.

Limitation

We did not consider the additional costs that ASM would acquire due to the injury, hospitalization and other associated costs due to unavailability in the Indian context. This would have underestimated the cost for ASM

Conclusion

In conclusion, though the systematic review and meta-analysis have shown VNS as a clinically effective adjunctive treatment for treating DRE, the cost-effectiveness analysis of VNS+ASM treatment for drug-resistant epileptic patients reveals that, it comes at a high cost. The ICER value of ₹7,45,798 for gaining a QALY of 0.4 years indicates that it may not be the most financially feasible option for a wider population. While VNS remains a valuable treatment for those who require it, its high expense makes it less affordable and may limit its widespread implementation in India.

Ref	Author	Year	Study Area	Objective	Result	Recommendation
01.	Aalbers ¹³	2016	The	To evaluate the safety and efficacy	Lead replacement is usually	Complete removal or replacement
			Netherlands	of complete removal or	performed because of infection or	of the VNS system including lead
				replacement of the VNS system	device malfunction, the former being	and coils is feasible and safe.
				and provide an extensive	reported in 3-6 % of patients after	Although initial results seem
				description of our surgical	initial implantation. Lead salvage by	promising, further research and
				technique.	prolonged antibiotic therapy with or	longer follow-up are needed to
					without removing the generator may	assess whether lead replacement
					be attempted, but the persistent	may affect VNS effectiveness.
					infection will necessitate removing all	
					hardware.	
02.	Abubakr ³⁷	2008	USA	To retrospectively evaluated the	This retrospective uncontrolled study	Improving seizure control in the
				long-term outcome of VNS	illustrates continued seizure reduction	long-term supports the possibility of
				therapy in patients with intractable	after long-term adjunctive VNS	a sustained VNS effect on seizure
				epilepsy treated in the	therapy in patients with intractable	reduction over time.
				comprehensive epilepsy center of	partial-onset epilepsy.	
				the New Jersey Neuroscience		
				Institute.		
03.	Aihua ³⁸	2014	China	To evaluate the efficacy and safety	The reduction in seizure frequency	In view of the significant reduction
				of transcutaneous vagus nerve	observed with t-VNS was correlated	in seizure frequency and severity

Table-2. Review of literature

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				stimulation (t-VNS) in patients	with seizure frequency and duration	along with the improvement in the
				with pharmacoresistant epilepsy.	of epilepsy but not with age, seizure	patients' mental states and QOL, we
					type, the number of AEDs, family	feel that t-VNS is an effective and
					history of epilepsy, MRI and EEG	safe therapy for pharmaco resistant
					abnormalities, or the initial	epilepsy. Furthermore, we found
					stimulation intensity. This suggests	that t-VNS may be most effective in
					that t-VNS would be most suitable for	those with high seizure frequency
					those with higher seizure frequency	and a long history of epilepsy.
					and those who have had epilepsy for a	Adverse effects included drowsiness
					long time	and dizziness, which were relieved
						by either reducing stimulus intensity
						or discontinuing the stimulus.
04.	Batson ³⁹	2022	Multicentric	This systematic literature review	This systematic review and meta-	VNS therapy resulted in reductions
				(SLR) and meta-analysis	analysis demonstrated that in people	in seizure frequency without
				examined the treatment efects of	with DRE, adjunctive high-	increasing the rate of SAEs
				VNS Therapy at up to 2 years as an	stimulation VNS therapy resulted in	
				adjunct to ASMs for the	statistically significant reductions in	
				management of adults with DRE	seizure frequency without increasing	
				based on the most up-to-date	the rate of SAEs or discontinuations	
				evidence from randomised	when compared with adjunctive low-	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				controlled trials (RCTs) and	stimulation VNS Therapy/ASM/best	
				comparative observational studies.	medical practice.	
05.	Bauer ⁴⁰	2016	Germany	To demonstrate superiority of add-	tVNS had a high treatment adherence	Future trials should focus on
				on therapy with "highlevel" tVNS	and was well tolerated. Superiority of	comparison of tVNS and iVNS and
				(stimulation frequency 25 Hz)	25 Hz tVNS over 1 Hz tVNS could	should preferably include some
				versus active control ("lowlevel"	not be proven in this relatively small	period of video EEG monitoring for
				tVNS, 1 Hz) in reducing seizure	study, which might be attributed to	objective quantification of treatment
				frequency	the higher stimulation intensity in the	results.
					control group. Efficacy data revealed	
					results that justify further trials with	
					larger patient numbers and longer	
					observation periods.	
06.	Boon ⁴¹	1999	Belgium	To evaluate efficacy of treatment	VNS is an effective and safe	Future research should be aimed at
				in terms of seizure control and	treatment for medically refractory	elucidating the basic mechanism of
				seizure severity was assessed one	epileptic seizures during the first	action of VNS and identifying the
				year before and after the	months after implantation. It appears	best clinical responders
				implantation of a vagus nerve	to be equally effective and safe in the	
				stimulator. Epilepsy-related direct	first 2 to 3 years and lacks common	
				medical costs (ERDMC) before	side effects of AED's. Cost-benefit	
					analysis is favorable. However, VNS	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				and after the implantation were	should be considered a palliative	
				also compared.	treatment and only be performed after	
					a thorough patient selection,	
					excluding patients who may benefit	
					from epilepsy surgery	
07.	Cramer ⁴²	2001		The purpose of the review is to	Overall success rates fell into two	Data allow comparisons among
				provide comparable data in a	general groups with ranges of 12-	AEDs and VNS using similar data
				standardized format for use by	20% for gabapentin (GBP),	from standard types of clinical trials.
				physicians and patients in the	lamotrigine (LTG), tiagabine (TGB),	
				selection of treatment options.	zonisamide and 27–29% for	
					levetiracetam, oxcarbazepine, and	
					topiramate (TPM). Summary	
					Complaint Scores also fell into two	
					general groups with ranges of -27 to	
					-82 for GBP, levetiracetam, TGB,	
					zonisamide and -113 to -205 for	
					LTG, oxcarbazepine and TPM. VNS	
					scores were in the lower or higher	
					success and summary complaint	
					categories depending on whether	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					scores from the pseudo-placebo group	
					were subtracted from the high dose	
					group.	
08.	Elger ⁴³	2000	Multicentric	Vagus nerve stimulation is	This study revealed considerable and	Further research on the functional
				associated with mood	sustained VNS-associated mood	integration of central and
				improvements in epilepsy patients.	improvements in patients with	autonomous nervous systems, in
					epilepsy. The reduction of depressive	which the vagus plays a decisive
					symptoms was more pronounced and	role, is needed.
					seemed to be independent of seizure	
					attenuation due to VNS	
09.	Elliott ⁴⁴	2009	USA	Refractory epilepsy in tuberous	Our results support efficacy and	VNS is a safe and effective
				sclerosis: vagus nerve stimulation	encourage using VNS and resective	treatment option for medically
				with or without subsequent	intracranial surgery in patients with	refractory epilepsy in patients with
				resective surgery.	TSC with refractory epilepsies. This	tuberous sclerosis complex. Nine of
					study endorses the continued and	11 patients (82%) experienced at
					expanded use of vagus nerve	least a 67% reduction in seizure
					stimulation in the adult and pediatric	burden. Lack of response to vagus
					TSC populations	nerve stimulation does not preclude
						subsequent improvement in seizure

Ref	Author	Year	Study Area	Objective	Result	Recommendation
						burden with intracranial epilepsy
						surgery
10	Englot ⁴⁵	2011	Multicentric	A meta-analysis of clinical studies	Through a meta-analysis of VNS	Vagus nerve stimulation should be
				examining the efficacy of VNS in	outcomes in treating medically	considered in patients in whom
				reducing seizure frequency in	refractory epilepsy, we found that	medical therapy has failed but who
				epilepsy	VNS is effective in reducing seizure	remain poor candidates for resection
					frequency by \geq 50% in approximately	or who continue to experience
					50% of patients, with a delayed	seizures after resection.
					benefit more than 1 year after surgery	
11	Forbes ⁴⁶	2003	Multicentric	The cost-utility of vagus nerve	Our model suggests that the economic	There is not a strong economic
				stimulator (VNS) devices for	argument against VNS implantation	argument against a programme of
				medically refractory epilepsy has	(with a 1 in 6 response rate) is weak,	VNS implantation, although care
				yet to be estimated.	particularly given the clinical	should be taken to try and identify
					imperative to treat in an otherwise no-	and treat those most likely to benefit
					win situation of medically intractable	
					epilepsy. As VNS is a last resort	
					treatment, with a good chance of a	
					meaningful reduction in seizure	
					frequency, a case can be made for	
					adopting the new technology.	

Author	Year	Study Area	Objective	Result	Recommendation
Ghani ⁴⁷	2015	Multicentric	The aim of this study is to	We estimate that the baseline cost per	High stimulation is more effective
			determine the effects of high and	quality adjusted life year gained from	than low stimulation in producing a
			low stimulation paradigms on a	a programme of six VNS implants,	greater reduction in seizure
			responder rate of \geq 50 and \geq 75 %	each with a battery life of 5 years,	frequency in patients with medically
			reduction in seizure frequency and	gaining 0.285 quality adjusted life	and surgically resistant epilepsy
			associated adverse effects in adults	years per annum, and averting £745 of	
			and children	health care costs to be £28 950	
Handforth ⁴⁸	1998	Multicentric	The purpose of this multicenter,	Patients receiving high stimulation	Vagus nerve stimulation is an
			add-on, double-blind, randomized,	had an average 28% reduction in total	effective and safe adjunctive
			active-control study was to	seizure frequency compared with a	treatment for patients with
			compare the efficacy and safety of	15% reduction in the low stimulation	refractory partial-onset seizures. It
			presumably therapeutic (high)	group. The high-stimulation group	represents the advent of a new,
			vagus nerve stimulation with less	also had greater improvements on	nonpharmacologic treatment for
			(low) stimulation	global evaluation scores, as rated by a	epilepsy.
				blinded interviewer and the patient.	
				High stimulation was associated with	
				more voice alteration and dyspnea.	
				No changes in physiologic indicators	
				of gastric, cardiac, or pulmonary	
				functions occurred.	
	Author Ghani ⁴⁷ Handforth ⁴⁸	AuthorYearGhani 472015Handforth481998Handforth481998	AuthorYearStudy AreaGhani 472015MulticentricHandforth481998Multicentric	AuthorYearStudy AreaObjectiveGhani 472015MulticentricThe aim of this study is to determine the effects of high and low stimulation paradigms on a responder rate of ≥50 and ≥75 % reduction in seizure frequency and associated adverse effects in adults and childrenHandforth481998MulticentricThe purpose of this multicenter, 	Author Year Study Area Objective Result Ghani 47 2015 Multicentric The aim of this study is to determine the effects of high and low stimulation paradigms on a responder rate of ≥50 and ≥75 % reduction in seizure frequency and associated adverse effects in adults years per annum, and averting £745 of health care costs to be £28 950 Handforth ⁴⁸ 1998 Multicentric The purpose of this multicenter, add-on, double-blind, randomized, active-control study was to compare the efficacy and safety of presumably therapeutic (high) vagus nerve stimulation with less lobal evaluation scores, as rated by a blinded interviewer and the patient. High stimulation scores, as rated by a blinded interviewer and the patient. High stimulation and dyspnea. No changes in physiologic indicators of gastric, cardiac, or pulmonary functions occurred.

Ref	Author	Year	Study Area	Objective	Result	Recommendation
14	Zeiler	2015	multicentre	To perform a systematic review on	A total of 28 patients were treated,	The study cannot recommend the
	et.al.49			the insertion of VNS for refractory	Among them, 76% displayed	use of VNS for RSE. Further
				status epilepticus (RSE) and its	cessation of RSE with VNS insertion	prospective study is warranted
				impact on the control of RSE	in case of generalized RSE, , whereas	
					25% responded in case of focal RSE	
15	Yoo &	2019		Discusses the gap between	Three randomized controlled trials	Patients with drug-resistant epilepsy
	Panov			evidence and practice and	comparing the medical versus	should be referred to comprehensive
	et.al ⁵⁰			common misconceptions about	surgical treatment for patients with	epilepsy centres where thorough
				epilepsy surgery and reviews the	drug-resistant epilepsy have shown	presurgical workup and surgical
				current diagnostic and therapeutic	the superiority of surgery in	options can be provided. The gap
				surgical options	controlling seizures and improved the	between evidence and practice can
					patient's quality of life. Further,	be bridged by education,
					responsive neurostimulation and	community outreach and provider's
					VNS have also shown efficacy in	earnest efforts to improve the
					seizure control that increases over	quality of life for patients with
					time.	epilepsy

Ref	Author	Year	Study Area	Objective	Result	Recommendation
16	Xiong	2020		To identify factors predicting the	The effectiveness of VNS was	The conventional and other new
	et,al ⁵¹			effect of VNS therapy and to select	confirmed by a number of studies.	factors should be analyzed further
				patients suitable for VNS	The factors post-traumatic epilepsy,	by more science and rigorous
				treatment	temporal lobe epilepsy and focal	experimental design are needed to
					interictal epileptiform discharges	identify the clear correlation with
					(IEDs) were favorable for the	the outcome of VNS therapy.
					treatment of VNS while	
					comprehensive IEDs and neuronal	
					migration disorders were indicative	
					of poor effect. Also, temporal lobe	
					epilepsy was generally effectively	
					controlled by this therapy and	
					youngers seemed to get more benefit	
					from VNS.	
17	Adriana M.	2020		To perform a scoping review of the	Patient demographics, seizure data,	Further efforts are required to
	Workewych			literature to identify biomarkers of	and details related to biomarkers were	validate existing biomarkers to
	et.al. ⁵²			VNS response in patients with	abstracted from all studies. From the	inform clinical decision-making.
				drug-resistant epilepsy.	288 records screened, 28 articles	
					reporting on 16 putative biomarkers	
					were identified. These were grouped	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					into four categories:	
					network/connectomic-based	
					biomarkers, electrophysiological	
					signatures, structural findings on	
					neuroimaging, and systemic assays.	
					Differences in brain network	
					organization, connectivity, and	
					electrophysiological synchronicity	
					demonstrated the most robust ability	
					to identify VNS responders.	
					Structural findings on neuroimaging	
					yielded inconsistent associations with	
					VNS responsiveness. With regard to	
					systemic biomarkers, heart rate	
					variability was shown to be an	
					independent marker of VNS	
					response, whereas inflammatory	
					markers were not useful.	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
18	Wheless	2018		To review the clinical data that	Studies have demonstrated the	The impact of VNS on mortality and
	James			support the device's efficacy in	efficacy of VNS therapy in adult and	SUDEP remains unsettled, with
	et.al. ⁵³			children, adolescents, and adults	pediatric patients with pharmaco	some data suggesting that it might
				and also to review its side-effect	resistant epilepsy. VNS is safe and	reduce the risk of SUDEP.
				profile, quality of life and cost	generally well tolerated; adverse	
				benefits, and the impact the device	events are typically related to the	
				has on sudden unexpected death in	surgical procedure or stimulation	
				epilepsy (SUDEP). To discuss	itself. Cost-effectiveness studies	
				candidate selection and provide	indicate that VNS provides a	
				guidance on dosing and future	substantial cost-savings benefit to	
				models	healthcare systems.	
19	Warwick	2007		To describe the efficacy of vagus	The patient had behavioral regression	
	et.al ⁵⁴			nerve stimulation therapy in	that correlated with worsening of his	
				reducing seizure severity as well as	intractable seizures	
				improving the behavioral		
				components of 23-year-old man's		
				Asperger syndrome and also to		
				review the current literature		
				regarding epilepsy in autistic		
				spectrum disorders.		

Ref	Author	Year	Study Area	Objective	Result	Recommendation
20	Uthman	2004		To perform a retrospective review	Mean seizure frequency decreased by	
	et.al ²⁹			of the safety, tolerability, and	26% after 1 year, 30% after 5 years,	
				efficacy of vagus nerve	and 52% after 12 years with VNS	
				stimulation (VNS) in 48 patients	treatment. Side effects were few and	
				with intractable partial epilepsy.	mild to moderate.	
21	Toffa et.al ⁵⁵	2020		To analyze the most meaningful	VNS is a relatively efficacious	The available publications reported
				available data describing the	treatment in refractory epilepsy with	data on small sample sizes. No study
				indications, safety and efficacy of	various known treatment response	describing long-term follow-up was
				the different approaches of VNS in	predictors. The adverse effects	found for these non-implantable
				clinical practice.	decrease over time, in contrast to the	devices. There is a large
					benefits which continue to improve	methodological disparity that
					up to 6-24 months. If its indication	significantly limits the conclusion
					was historically associated with	that can be drawn on the efficacy
					epilepsy, this technique represents a	and safety of these devices
					promising treatment in several	
					comorbid neuropsychiatric	
					conditions such as headache and drug	
					resistant depression. The implantable	
					VNS remains the standard today, but	
					interesting data have been published	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					on the efficacy and safety of	
					transcutaneous devices.	
22	Steven C	2002		To discuss the clinical trials that		Additional studies are suggested to
	Schachter			provided evidence for the		further explore the capabilities of
	et.al.56			approval, long-term efficacy,		VNS therapy.
				efficacy in special populations and		
				co-morbid conditions, and safety		
				and tolerability.		
23	Santiago-	2006		To evaluate the effects of two	In 16 patients (80%), IED decreased	Our results are not enough to infer a
	Rodriguez			cycles of vagus nerve stimulation	during 30 s/5 min cycle (Group 1) and	determined mechanism of action of
	et.al. ⁵⁷			(VNS), 30 s/5 min and 7 s/18 s on	increased in 4 (Group 2). In Group 1,	VNS upon the decrease in
				the interictal epileptiform	during the 30 s/5 min cycle the	epileptiform activity and clustering
				discharges	following variables showed a	effect in the EEG.
					decrease: TIEDM, from 12.64 s to	
					9.62 s (p=0.001); IED/NIED index,	
					from 0.53 to 0.31 (p=0.021), and IED	
					duration, from 1.57s to	
					1.05s(p=0.015); whereas SFP	
					duration increased from 20.06s to	
					37.73s (p=0.008). The decrease in	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					IED was 41% and the increase in SFP	
					88%. In the 7 s/18 s cycle, only SFP	
					had an increase, 72% (p<0.043). In	
					Group 2, an increase in IED during	
					both cycles was found. In the 30 s/5	
					min cycle, TIEDM increased 56%	
					(p=0.042) and IED/NIED index	
					259% (p=0.040).	
24	Philippe	2014	Beijing (3	To evaluate whether vagus nerve	VNS therapy as a treatment adjunct to	Our findings demonstrate that the
	Ryvlin		hospitals	stimulation (VNS) as adjunct to	BMP in patients with	benefits of such therapy may be
	et.al ⁵⁸		namely	best medical practice (VNS +	pharmacoresistant focal seizures was	extended beyond the sole reduction
				BMP) is superior to BMP alone in	associated with a significant	in seizure frequency.
				improving long-term health-	improvement in HRQoL compared	
				related quality of life (HRQoL).	with BMP alone.	
25	Rong	2014	China	To examine the safety and	In the pilot study, 47 of the 50	Similar to the therapeutic effect of
	et.al. ⁵⁹			effectiveness of transcutaneous	epilepsy patients completed the 24-	VNS, ta-VNS can suppress epileptic
				auricular vagus nerve stimulation	week treatment; three dropped off.	seizures and is a safe, effective,
				(ta-VNS) for patients with drug-	After 8-week treatment, six of the 47	economical, and widely applicable
				resistant epilepsy.	patients (12%) were seizure free and	treatment option for drug-resistant
					12 (24%) had a reduction in seizure	epilepsy.

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					frequency. In week 16 of the	
					continuous treatment, six of the 47	
					patients (12%) were seizure free; 17	
					(34%) had a reduction in seizure	
					frequency. After 24 weeks' treatment,	
					eight patients (16%) were seizure	
					free; 19 (38%) had reduced seizure	
					frequency.	
26	Privitera	2022		To overview the current evidence	VNS for partial seizures appears to be	The evidence on these outcomes is
	et.al. ⁶⁰			for the efficacy and tolerability of	an effective and well tolerated	limited and of moderate to low
				vagus nerve stimulation when used	treatment in 439 included participants	quality. Further high quality
				as an adjunctive treatment for	from five trials. Results of the overall	research is needed to fully evaluate
				people with drug-resistant partial	efficacy analysis show that VNS	the efficacy and tolerability of VNS
				epilepsy.	stimulation using the high stimulation	for drug resistant partial seizures.
					paradigm was significantly better	
				To determine: (1) The effects on	than low stimulation in reducing	
				seizures of VNS compared to	frequency of seizures. Results for the	
				controls e.g. high-level stimulation	outcome "withdrawal of allocated	
				compared to low-level stimulation	treatment" suggest that VNS is well	
				(presumed subtherapeutic dose);	tolerated as withdrawals were rare.	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				and (2) The adverse effect profile	No significant difference was found	
				of VNS compared to controls e.g.	in withdrawal rates between the high	
				high-level stimulation compared	and low stimulation groups, however	
				to low-level stimulation	limited information was available	
					from the evidence included in this	
					review so important differences	
					between high and low stimulation	
					cannot be excluded . Adverse effects	
					associated with implantation and	
					stimulation were primarily	
					hoarseness, cough, dyspnea, pain,	
					paresthesia, nausea and headache,	
					with hoarseness and dyspnea more	
					likely to occur on high stimulation	
					than low stimulation.	
27	Polkey	2003		To review the concepts of	1. These non-resective surgical	Earlier surgical operations in this
	et.al. ⁶¹			pathophysiology of epilepsy	options rarely produce complete	group probably now have a limited
				which underly the non-resective	freedom from seizures but have been	place.
				surgical treatment of epilepsy.	shown to significantly improve	
					seizure control significantly and to be	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					accompanied by improvements in	
					behaviour, cognition and quality of	
					life (QOL). 2. Stimulation, apart	
					from economic considerations, has	
					considerable potential benefit, not	
					least of which is extending treatment	
					to groups previously excluded. 4.	
					Vagus nerve stimulation is now an	
					accepted method of treatment which:	
					a) should be applied after proper	
					assessment; b) shows benefits in	
					seizure control, behaviour and QOL;	
					c) requires more rigour in its	
					application. 5. Deep brain	
					stimulation, although in its early	
					stages, holds considerable potential.	
28	Pati et.al. ⁶²	2014		To review recent developments in	The author hope that continued	Advances in informatics and
				the pathogenesis and treatment of	progress in genomics will lead to	genetics may be harnessed to predict
				pharmacoresistant epilepsy,	targeted development of disease	which patients are likely to develop
				placing these topics in clinical	modifying drugs that can impede or	pharmacoresistance, to cure certain

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				context to facilitate and enhance	reverse the process of	genetic epilepsies, and to
				the physician's ability to manage	epileptogenesis.	individualize antiepileptic drug
				it.		selection on the basis of each
						person's genetic profile.
29	Panebianco	2016		This article reviews the literature	VNS for partial seizures appears to be	
	et.al ⁶³			from 1988 to nowadays. Further, it	an effective and well tolerated	
				discusses thoroughly the anatomy	treatment in adult and pediatric	
				and physiology of vagus nerve and	patients. People noted improvements	
				the potential mechanisms of	in feelings of well-being, alertness,	
				actions and clinical applications	memory and thinking skills, as well as	
				involved in VNS therapy, as well	mood. The adverse effect profile is	
				as the management, safety,	substantially different from the	
				tolerability and effectiveness of	adverse effect profile associated with	
				VNS therapy.	antiepileptic drugs, making VNS a	
					potential alternative for patients with	
					difficulty tolerating antiepileptic drug	
					adverse effects.	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
30	Navas	2010		The study presents two adult	The author conclude that R-VNS	
	et.al ⁶⁴ .			patients who underwent R-VNS.	therapy is an alternative, promising	
				One of the patients improved	therapy for reducing seizure activity	
				dramatically after L-VNS, but the	in those patients who cannot undergo	
				device had to be removed because	L-VNS implantation. Close follow-	
				of mechanical malfunction. This	up and frequent ECG monitoring is	
				patient was thought to be at high	required to detect the presence of	
				risk for nerve injury if L-	cardiac side effects.	
				VNS reimplantation was done,		
				thus R-VNS was chosen. In the		
				other patient, L-VNS was first		
				attempted, but the operation had to		
				be stopped due to significant		
				bleeding caused by the accidental		
				tearing of an ectopic vein. Both		
				patients had a marked reduction in		
				their seizure activity and none of		
				them had cardiac side effects from		
				therapeutic R-VNS.		

Ref	Author	Year	Study Area	Objective	Result	Recommendation
31	Hsiangkuo	2015	America	History and development of VNS,	VNS was approved for the treatment	Noninvasive VNS (nVNS)
	Yuan,			as well as recent progress in	of refractory epilepsy and later for	exhibits greater safety profiles and
	Stephen D			invasive and nVNS.	the refractory depression. To date,	seems similarly effective to their
	Silberste				several novel electrical stimulating	invasive counterpart.
	In ⁶⁵				devices are being developed.	
32	Yin Yan, et	2022	China	To describe the clinical features	Timely reduction or discontinuation	Exploring the factors related to FN
	al ⁶⁶			and possible mechanisms of FN	of ASMs and the use of antipsychotic	caused by different ASMs can
				induced by ASMs and to explore	drugs, the overall prognosis is good.	further improve clinicians'
				strategies for its treatment.		understanding of FN. The specific
						pathogenesis of FN needs further
						research in the future.
33	Stefan,	2021	Germany	To determine whether t-VNS	t-VNS for pharmacoresistant epilep-	The noninvasive and reversible t-
	et.al ⁶⁷			offers a treatment option in drug-	sies indicates that t-VNS is safe, well	VNS approach mayoffer new
				resistant epilepsy, we initiated a	tolerated, and practi-cable for long-	options for improving patient care
				pilot study concerning safety and	term treatment. Some subjective	by use of well-tolerated adjunctive
				tolerability	complaintssuch as hoarseness	epilepsy treatment. In this pilot
					occurred but are not easily explained	study,primary outcomes were
					byauricular nerve stimulation.	safety and tolerability, and second-
						ary outcome was seizure reduction.

Ref	Author	Year	Study Area	Objective	Result	Recommendation
34	Haiyang	2009	China	To observe the long-term interictal	Statistically significant difference of	VNS can induce progressive
	Wang et al ⁶⁸		(Harbin and	EEG changes induced by VNS,	IEDs was seen when comparing the	electrophysiological effect on
			Shanghai)	and to investigate the probable	state of "deactivation" with the states	epileptiform activity over time.
				mechanism of action of VNS in	of "activation" and "reactivation",	This may reflect the mechanism of
				achieving seizure control	respectively (P<0.01). However,	chronic action of VNS with
					there was no significant difference in	desynchronization of EEG in
					IEDs between "activation" and	achieving seizure control.
					"reactivation" (P>0.05).	
35	J	2001	Europe	To study the clinical experience in	VNS has to be considered an	No evidence was found for a
	Scherrmann			a large patient series on vagus	appropriate strategy for the add-on	differential outcome of initial
	et al ¹⁶			nerve stimulation (VNS).	treatment of drug-resistant seizures,	standard cycle versus initial rapid
					particularly in cases not suitable for	cycle stimulation conditions.
					epilepsy surgery.	
36	Daniel San-	2019	Multicenter	To review the literature about the	Analyzed 27 articles (45 patients)	Case series and case reports
	Juan et al ⁶⁹			efficacy and safety of	with 4 different neuromodulation	suggest that neuromodulation
				neuromodulation therapies in SE	therapies. In ECT we found 80% rate	therapies can abort SE in 80-100%
				in humans.	of disruption of SE and 5% of adverse	of patients (Oxford scale and
					events was reported. Using iVNS	GRADE were level 4 and D) with
					15/16 (93.7%) patients resolved the	a wide range of adverse effects,
					SE. All patients who underwent TMS	which claims for prospective

Ref	Author	Year	Study Area	Objective	Result	Recommendation
					and DBS aborted SE, however, 50%	studies on the relationship be-
					of patients with DBS had severe	tween efficacy and safety.
					adverse events	
37	William E	2009	-	Medically intractable tonic and	Callosotomy can be performed with	There are low overall side effects
	Rosenfeld			atonic seizures may be responsive	low morbidity, and the prospect of	associated with a VNS procedure,
	et al ⁷⁰			to either vagus nerve stimulation	perhaps greater relief from more	and there are no medication side
				(VNS) or corpus callosum section.	injurious sudden falls may make it	effects
					equally reasonable for patients	
					willing to undergo a larger procedure.	
					VNS is a less invasive, lower risk	
					procedure, and these attributes argue	
					reasonably for its consideration in the	
					medically intractable patient.	
38	John D.	2015	San	To examine the evidence-based	Atonic seizures are debilitating, have	There is a clear limitations in
	Rolston et		Francisco,	outcomes for both procedures,	a poor prognosis, and are incredibly	systematic reviews to guide
	al ⁷¹		USA	including their documented	difficult to control with antiepileptic	clinical practice, these data suggest
				morbidities, and try to provide	medications. Two surgical treatments	that CC might be more effective

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				guidance for the treatment of this	are primarily used to address atonic	than VNS for atonic seizures.
				challenging seizure subtype.	seizures: corpus callosotomy (CC)	
					and vagus nerve stimulation (VNS).	
					CC appears to offer significantly	
					better chances of seizure freedom	
					compared with VNS: 58.0% versus	
					21.1% (RR: 2.8; 95% CI: 1.5-5.1)	
					and seizure control: 88.6% versus	
					52.6% of patients, respectively, (RR:	
					1.7; 95% CI: 1.2–2.3).	
39	Carlo Efisio	2020	Rome, Italy	To assess the clinical,	VNS reduces by at least 50% the	VNS appears to be an effective and
	Marras et			organizational, financial, and	frequency of seizures in 21-75% of	well-tolerated treatment for partial
	al ⁷²			economic impact of VNS therapy	subjects; the benefit of treatment	seizures; at the time of publication,
				in drug-resistant epilepsies and to	might persist longer than 15 years of	however, VNSs were utilized in all
				establish the congruity between	follow-up; and both adults and	ages and different kinds of
				costs incurred and health service	children could benefit from the	epilepsies, syndromes and
				reimbursement.	treatment in 50-62% of patients	etiologies.

Ref	Author	Year	Study Area	Objective	Result	Recommendation
40	Lampros	2021	Multicenter	To study the systematic review of	Three studies reported a statistically	The results of this review suggest
	et.al ⁷³			the literature to elucidate efficacy,	significant (p<0.05) improvement in	that patients with epilepsy could
				adverse effects and technical	patients' quality of life and two	possibly benefit from the use of t-
				features of t-VNS in patients with	studies reported statistically	VNS. The present study also
				epilepsy.	significant (p<0.05) seizure severity	emphasizes the limitations of
					reduction. The most common side	previous clinical trials concerning
					effect was headache (8.9%), followed	the applications of t-VNS in people
					by skin irritation at the placement site	with epilepsy and thus could be a
					(7.1%) and nasopharyngitis (5.1%).	guidance for the conduction of
					No serious or life-threatening side	future trials.
					effects were reported.	
41	Amar et.al ¹⁶	1998	USA	To evaluate theoretical and	All operations were successful,	Vagus nerve stimulation has proven
				practical issues attendant to this	uneventful, and without adverse	to be a safe, feasible, and potentially
				concept. To review the anatomic	postoperative sequelae. One patient	effective method of reducing
				and physiological background	was excluded from analysis because	seizures in select patient
				arguing for clinical application	of inadequate seizure calendars. Of	populations. However, the elements
				of vagus nerve stimulation,	the seven patients initially assigned to	of strict definition for the
				discuss salient aspects of patient	high stimulation, the mean reduction	application of the method require
				selection and the nuances of	in seizure frequency was 71% at 3	further study.
				surgical technique, and present our	months and 81% at 18 months. Five	

Ref	Author	Year	Study Area	Objective	Result	Recommendation
				observations of and results from	(72%) of these patients had a greater	
				application of the method.	than 75% reduction in seizure	
					frequency, and one (14%) remained	
					seizure-free after more than 1.5 years	
					of follow-up. The mean reduction in	
					seizure frequency among the low-	
					stimulation group was only 6% at 3	
					months. No serious complications,	
					device failures, or physiological	
					perturbations occurred.	

References

- ¹ Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2020; 28(2):111-128.
- ² Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 2020; 19(3):255-265.
- ³ GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5):459-480.
- ⁴ Dhiman V, Menon GR, Kaur S, Mishra A, John D, Rao Vishnu MV, Tiwari RR, Dhaliwal RS. A Systematic Review and Meta-analysis of Prevalence of Epilepsy, Dementia, Headache, and Parkinson Disease in India. Neurol India 2021; 69(2):294-301.
- ⁵ World Health Organization: Epilepsy key facts. <u>https://www.who.int/news-room/fact-sheets/detail/epilepsy#:~:text=Rates%20of%20disease,Epilepsy%20accounts%20for%20a%20significant%20proportion%20of%20the%20world's%20disease,and%2010%20per%2010 00%20people.</u>
- ⁶ Santhosh NS, Sinha S, Satishchandra P. Epilepsy: Indian perspective. Ann Indian Acad Neurol 2014; 17(Suppl 1): S3-S11.
- ⁷ Raspin C, Shankar R, Barion F, Pollit V, Murphy J, Sawyer L, Danielson V. An economic evaluation of vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug-resistant epilepsy in England. J Med Econ 2021; 24(1):1037-1051.
- ⁸ Workewych AM, Arski ON, Mithani K, et al. Biomarkers of seizure response to vagus nerve stimulation: a scoping review. Epilepsia 2020; 61: 2069–2085.
- ⁹ Shukla, A. K., & Mehani, R. (2017). Cost analysis of antiepileptic drugs available in India. International Journal of Basic & Clinical Pharmacology, 5(4), 1636–1640.
- ¹⁰ Anyanwu C, Motamedi GK. Diagnosis and Surgical Treatment of Drug-Resistant Epilepsy. Brain Sci 2018; 8(4): 49.
- ¹¹ Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, Holt A, Lim KO, Carey JR, Vitek JL, He B. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans Biomed Eng 2013; 60(3): 610-24.
- ¹² Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache 2016; 56(2): 259-66.
- ¹³ Morris GL 3rd, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the american academy of neurology. Epilepsy Curr 2013; 13(6): 297-303..
- ¹⁴ Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, Henry TR, Collins SD, Vaughn BV, Gilmartin RC, Labar DR, Morris GL 3rd, Salinsky MC, Osorio I, Ristanovic RK, Labiner DM, Jones JC, Murphy JV, Ney GC, Wheless JW. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998 Jul;51(1):48-55.

- ¹⁵ Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S, Apuzzo ML. An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery. 1998 Dec;43(6):1265-76; discussion 1276-80.
- ¹⁶ Scherrmann J, Hoppe C, Kral T, Schramm J, Elger CE. Vagus nerve stimulation: clinical experience in a large patient series. J Clin Neurophysiol. 2001 Sep;18(5):408-14.
- ¹⁷ DeGiorgio C, Heck C, Bunch S, Britton J, Green P, Lancman M, Murphy J, Olejniczak P, Shih J, Arrambide S, Soss J. Vagus nerve stimulation for epilepsy: randomized comparison of three stimulation paradigms. Neurology. 2005 Jul 26;65(2):317-9.
- ¹⁸ Ben-Menachem E, Hellström K, Waldton C, Augustinsson LE. Evaluation of refractory epilepsy treated with vagus nerve stimulation for up to 5 years. Neurology. 1999 Apr 12;52(6):1265-7.
- ¹⁹Labar D, Murphy J, Tecoma E. Vagus nerve stimulation for medication-resistant generalized epilepsy. E04 VNS Study Group. Neurology. 1999 Apr 22;52(7):1510-2
- ²⁰ DeGiorgio CM, Schachter SC, Handforth A, Salinsky M, Thompson J, Uthman B, Reed R, Collins S, Tecoma E, Morris GL, Vaughn B, Naritoku DK, Henry T, Labar D, Gilmartin R, Labiner D, Osorio I, Ristanovic R, Jones J, Murphy J, Ney G, Wheless J, Lewis P, Heck C. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000 Sep;41(9):1195-200
- ²¹ Chavel, S.M., Westerveld, M., Spencer, S., 2003. Long-term outcome of vagus nerve stimulation for refractory partial epilepsy. Epilepsy Behav. 4, 302–309.
- ²² Vonck K, Thadani V, Gilbert K, Dedeurwaerdere S, De Groote L, De Herdt V, Goossens L, Gossiaux F, Achten E, Thiery E, Vingerhoets G, Van Roost D, Caemaert J, De Reuck J, Roberts D, Williamson P, Boon P. Vagus nerve stimulation for refractory epilepsy: a transatlantic experience. J Clin Neurophysiol. 2004 Jul-Aug;21(4):283-9
- ²³ Huf RL, Mamelak A, Kneedy-Cayem K. Vagus nerve stimulation therapy: 2-year prospective open-label study of 40 subjects with refractory epilepsy and low IQ who are living in longterm care facilities. Epilepsy Behav. 2005 May;6(3):417-23
- ²⁴ Ardesch JJ, Buschman HP, Wagener-Schimmel LJ, van der Aa HE, Hageman G. Vagus nerve stimulation for medically refractory epilepsy: a long-term follow-up study. Seizure. 2007 Oct;16(7):579-85
- ²⁵ Abubakr A, Wambacq I. Long-term outcome of vagus nerve stimulation therapy in patients with refractory epilepsy. J Clin Neurosci 2008
- ²⁶ Boon P, Vonck K, Vandekerckhove T, D'have M, Nieuwenhuis L, Michielsen G, Vanbelleghem H, Goethals I, Caemaert J, Calliauw L, De Reuck J. Vagus nerve stimulation for medically refractory epilepsy; efficacy and cost-benefit analysis. Acta Neurochir (Wien) 1999;141(5):447-52
- ²⁷ Morris GL 3rd, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999 Nov 10;53(8):1731-5
- ²⁸ Elliott RE, Carlson C, Kalhorn SP, Moshel YA, Weiner HL, Devinsky O, Doyle WK. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery. Epilepsy Behav 2009;16(3):454-60
- ²⁹ Uthman BM, Reichl AM, Dean JC, Eisenschenk S, Gilmore R, Reid S, Roper SN, Wilder BJ. Effectiveness of vagus nerve stimulation in epilepsy patients: a 12-year observation. Neurology 2004 28; 63(6): 1124-6.
- ³⁰ Santiago-Rodríguez E, Alonso-Vanegas M, Cárdenas-Morales L, Harmony T, Bernardino M, Fernández-Bouzas A. Effects of two different cycles of vagus nerve stimulation on interictal epileptiform discharges. Seizure. 2006 Dec;15(8):615-20

- ³¹ Wang H, Chen X, Lin Z, Shao Z, Sun B, Shen H, Liu L. Long-term effect of vagus nerve stimulation on interictal epileptiform discharges in refractory epilepsy. J Neurol Sci 2009; 284(1-2):96-102.
- ³² Müller K, Fabó D, Entz L, Kelemen A, Halász P, Rásonyi G, Eross L. Outcome of vagus nerve stimulation for epilepsy in Budapest. Epilepsia. 2010 Jul;51 Suppl 3:98-101
- ³³ Tzadok M, Harush A, Nissenkorn A, Zauberman Y, Feldman Z, Ben-Zeev B. Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy. Seizure. 2019 Oct;71:140-144
- ³⁴ De Herdt V, Boon P, Ceulemans B, Hauman H, Lagae L, Legros B, Sadzot B, Van Bogaert P, van Rijckevorsel K, Verhelst H, Vonck K. Vagus nerve stimulation for refractory epilepsy: a Belgian multicenter study. Eur J Paediatr Neurol. 2007 Sep;11(5):261-9
- ³⁵ Ghaemi K, Elsharkawy AE, Schulz R, Hoppe M, Polster T, Pannek H, Ebner A. Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up. Seizure. 2010 Jun;19(5):264-8
- ³⁶ Hilderink J, Tjepkema-Cloostermans MC, Geertsema A, Glastra-Zwiers J, de Vos CC. Predicting success of vagus nerve stimulation (VNS) from EEG symmetry. Seizure. 2017 May;48:69-73
- ³⁷ Abubakr A, Wambacq I. Long-term outcome of vagus nerve stimulation therapy in patients with refractory epilepsy. J Clin Neurosci 2008;15(2):127-9
- ³⁸ Aihua L, Lu S, Liping L, Xiuru W, Hua L, Yuping W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav 2014; 39: 105-10.
- ³⁹ Batson S, Shankar R, Conry J, Boggs J, Radtke R, Mitchell S, Barion F, Murphy J, Danielson V. Efficacy and safety of VNS therapy or continued medication management for treatment of adults with drug-resistant epilepsy: systematic review and meta-analysis. J Neurol 2022; 269(6): 2874-2891.
- ⁴⁰ Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, Hillenbrand B, Hirsch M, Last C, Lerche H, Mayer T, Schulze-Bonhage A, Steinhoff BJ, Weber Y, Hartlep A, Rosenow F, Hamer HM. Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02). Brain Stimul 2016;9(3):356-363
- ⁴¹ Boon P, Vonck K, Vandekerckhove T, D'have M, Nieuwenhuis L, Michielsen G, Vanbelleghem H, Goethals I, Caemaert J, Calliauw L, De Reuck J. Vagus nerve stimulation for medically refractory epilepsy; efficacy and cost-benefit analysis. Acta Neurochir (Wien) 1999;141(5):447-52
- ⁴² Cramer JA, Ben Menachem E, French J. Review of treatment options for refractory epilepsy: new medications and vagal nerve stimulation. Epilepsy Res 2001;47(1-2):17-25
- ⁴³ Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 2000;42(2-3):203-10
- ⁴⁴ Elliott RE, Carlson C, Kalhorn SP, Moshel YA, Weiner HL, Devinsky O, Doyle WK. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery. Epilepsy Behav 2009;16(3):454-60
- ⁴⁵ Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg 2011; 115(6):1248-55.
- ⁴⁶ Forbes RB, Macdonald S, Eljamel S, Roberts RC. Cost-utility analysis of vagus nerve stimulators for adults with medically refractory epilepsy. Seizure 2003; 12(5): 249-56.
- ⁴⁷ Ghani S, Vilensky J, Turner B, Tubbs RS, Loukas M. Meta-analysis of vagus nerve stimulation treatment for epilepsy: correlation between device setting parameters and acute response. Childs Nerv Syst 2015; 31(12): 2291-304.

- ⁴⁸ Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, Henry TR, Collins SD, Vaughn BV, Gilmartin RC, Labar DR, Morris GL 3rd, Salinsky MC, Osorio I, Ristanovic RK, Labiner DM, Jones JC, Murphy JV, Ney GC, Wheless JW. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998 Jul;51(1):48-55.
- ⁴⁹ Zeiler FA, Zeiler KJ, Teitelbaum J, Gillman LM, West M. VNS for refractory status epilepticus. Epilepsy Res 2015;112:100-13
- ⁵⁰ Yoo JY, Panov F. Identification and Treatment of Drug-Resistant Epilepsy. Continuum (Minneap Minn) 2019 ;25(2):362-380
- ⁵¹ Xiong J, Cao Y, Yang W, Chen Z, Yu Q. Can we predict response to vagus nerve stimulation in intractable epilepsy. Int J Neurosci 2020; 130(10): 1063-1070.
- ⁵² Workewych AM, Arski ON, Mithani K, Ibrahim GM. Biomarkers of seizure response to vagus nerve stimulation: A scoping review. Epilepsia 2020; 61(10):2069-2085.
- ⁵³ Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav 2018;88S:2-10
- ⁵⁴ Warwick TC, Griffith J, Reyes B, Legesse B, Evans M. Effects of vagus nerve stimulation in a patient with temporal lobe epilepsy and Asperger syndrome: case report and review of the literature. Epilepsy Behav 2007;10(2):344-7
- ⁵⁵ Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 2020; 83:104-123.
- ⁵⁶ Schachter SC. Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology 2002 24; 59(6 Suppl 4):S15-20.
- ⁵⁷ Santiago-Rodríguez E, Alonso-Vanegas M, Cárdenas-Morales L, Harmony T, Bernardino M, Fernández-Bouzas A. Effects of two different cycles of vagus nerve stimulation on interictal epileptiform discharges. Seizure 2006; 15(8):615-20.
- ⁵⁸ Ryvlin P, Gilliam FG, Nguyen DK, Colicchio G, Iudice A, Tinuper P, Zamponi N, Aguglia U, Wagner L, Minotti L, Stefan H, Boon P, Sadler M, Benna P, Raman P, Perucca E. The longterm effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 2014; 55(6):893-900.
- ⁵⁹ Rong P, Liu A, Zhang J, Wang Y, Yang A, Li L, Ben H, Li L, Liu R, He W, Liu H, Huang F, Li X, Wu P, Zhu B. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J (Engl) 2014; 127(2):300-4.
- ⁶⁰ Privitera MD, Welty TE, Ficker DM, Welge J. Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev 2002; (1): CD002896
- ⁶¹ Polkey CE. Alternative surgical procedures to help drug-resistant epilepsy a review. Epileptic Disord 2003; 5(2):63-75.
- ⁶² Pati S, Alexopoulos AV. Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Cleve Clin J Med 2010; 77(7): 457-67.
- ⁶³ Panebianco M, Zavanone C, Dupont S, Restivo DA, Pavone A. Vagus nerve stimulation therapy in partial epilepsy: a review. Acta Neurol Belg 2016; 116(3): 241-8.
- ⁶⁴ Navas M, Navarrete EG, Pascual JM, Carrasco R, Núñez JA, Shakur SF, Pastor J, Sola RG. Treatment of refractory epilepsy in adult patients with right-sided vagus nerve stimulation. Epilepsy Res 2010; 90(1-2):1-7.
- ⁶⁵ Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache 2016; 56(2):259-66.
- ⁶⁶ Yan Y, Wu JH, Peng XY, Wang XF. Effects of antiseizure medications on alternative psychosis and strategies for their application. World J Psychiatry 2022 19;12(4):580-587

- ⁶⁷ Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, Kasper BS, Hammen T, Rzonsa M, Pauli E, Ellrich J, Graf W, Hopfengärtner R. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 2012; 53(7): e115-8.
- ⁶⁸ Wang H, Chen X, Lin Z, Shao Z, Sun B, Shen H, Liu L. Long-term effect of vagus nerve stimulation on interictal epileptiform discharges in refractory epilepsy. J Neurol Sci 2009; 284(1-2):96-102.
- ⁶⁹ San-Juan D, Dávila-Rodríguez DO, Jiménez CR, González MS, Carranza SM, Hernández Mendoza JR, Anschel DJ. Neuromodulation techniques for status epilepticus: A review. Brain Stimul 2019;12(4):835-844
- ⁷⁰ Rosenfeld WE, Roberts DW. Tonic and atonic seizures: what's next--VNS or callosotomy? Epilepsia 2009;50 Suppl 8:25-30
- ⁷¹ Rolston JD, Englot DJ, Wang DD, Garcia PA, Chang EF. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review. Epilepsy Behav 2015; 51:13-7.
- ⁷² Marras CE, Colicchio G, De Palma L, De Benedictis A, Di Gennaro G, Cavaliere M, Cesaroni E, Consales A, Asioli S, Caulo M, Villani F, Zamponi N. Health Technology Assessment Report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy. Int J Environ Res Public Health 2020 24;17(17):6150
- ⁷³ Lampros M, Vlachos N, Zigouris A, Voulgaris S, Alexiou GA. Transcutaneous Vagus Nerve Stimulation (t-VNS) and epilepsy: A systematic review of the literature. Seizure 2021; 91:40-48.